On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

Authors

  • Kh. Erfani School of Mathematical Science, Shahrood University of Technology, Shahrood, Iran.
  • S. Rahimi Sharbaf School of Mathematical Science, Shahrood University of Technology, Shahrood, Iran.
Abstract:

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎are respectively the minimum possible values‎ ‎of $sum_c D(G)$ and $sum_c S(G)$‎, ‎where the minimums are taken over all proper coloring of $c$‎. ‎In this work‎, ‎we study the edge-difference chromatic sum and the edge-sum chromatic sum of graphs‎. ‎In this regard‎, ‎we present some necessary conditions for the existence of homomorphism between two graphs‎. ‎Moreover‎, ‎some upper and lower bounds for these parameters in terms of the fractional chromatic number are introduced‎ ‎as well‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

full text

Edge pair sum labeling of spider graph

An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...

full text

edge pair sum labeling of some cycle related graphs

let g be a (p,q) graph. an injective map f : e(g) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: v (g) → z - {0} defi ned by f*(v) = σp∈ev f (e) is one-one where ev denotes the set of edges in g that are incident with a vertex v and f*(v (g)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} u {±k(p+1)/2} according a...

full text

On the k-restricted edge-connectivity of matched sum graphs

A matched sum graph G1MG2 of two graphs G1 and G2 of the same order n is obtained by adding to the union (or sum) of G1 and G2 a set M of n independent edges which join vertices in V (G1) to vertices in V (G2). When G1 and G2 are isomorphic, G1MG2 is just a permutation graph. In this work we derive bounds for the k-restricted edge connectivity λ(k) of matched sum graphs G1MG2 for 2 ≤ k ≤ 5, and...

full text

Edge Clique Covering Sum of Graphs

The edge clique cover sum number (resp. edge clique partition sum number) of a graph G, denoted by scc(G) (resp. scp(G)), is defined as the smallest integer k for which there exists a collection of complete subgraphs of G, covering (resp. partitioning) all edges of G such that the sum of sizes of the cliques is at most k. By definition, scc(G) 5 scp(G). Also, it is known that for every graph G ...

full text

On sum edge-coloring of regular, bipartite and split graphs

An edge-coloring of a graph G with natural numbers is called a sum edge-coloring if the colors of edges incident to any vertex of G are distinct and the sum of the colors of the edges of G is minimum. The edge-chromatic sum of a graph G is the sum of the colors of edges in a sum edge-coloring of G. It is known that the problem of finding the edge-chromatic sum of an r-regular (r ≥ 3) graph is N...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  33- 42

publication date 2017-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023